The Equivalence of Two Graph Polynomials and a Symmetric Function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Equivalence of Two Graph Polynomials and a Symmetric Function

The U -polynomial, the polychromate and the symmetric function generalization of the Tutte polynomial due to Stanley are known to be equivalent in the sense that the coefficients of any one of them can be obtained as a function of the coefficients of any other. The definition of each of these functions suggests a natural way in which to strengthen them which also captures Tutte’s universal V -f...

متن کامل

a case study of the two translators of the holy quran: tahereh saffarzadeh and laleh bakhtiar

بطورکلی، کتاب های مقدسی همچون قران کریم را خوانندگان میتوان مطابق با پیش زمینه های مختلفی که درند درک کنند. محقق تلاش کرده نقش پیش زمینه اجتماعی-فرهنگی را روی ایدئولوژی های مترجمین زن و در نتیجه تاثیراتش را روی خواندن و ترجمه آیات قرآن کریم بررسی کند و ببیند که آیا تفاوت های واژگانی عمده ای میان این مترجمین وجود دارد یا نه. به این منظور، ترجمه 24 آیه از آیات قرآن کریم مورد بررسی مقایسه ای قرار ...

15 صفحه اول

The Polynomials of a Graph

In this paper, we are presented a formula for the polynomial of a graph. Our main result is the following formula: [Sum (d{_u}(k))]=[Sum (a{_kj}{S{_G}^j}(1))], where, u is an element of V(G) and 1<=j<=k.

متن کامل

Symmetric Function Generalizations of Graph Polynomials

Motivated by certain conjectures regarding immanants of Jacobi-Trudi matrices, Stanley has recently defined and studied a symmetric function generalization XG of the chromatic polynomial of a graph G. Independently, Chung and Graham have defined and studied a directed graph invariant called the cover polynomial. The cover polynomial is closely related to the chromatic polynomial and to the rook...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Combinatorics, Probability and Computing

سال: 2009

ISSN: 0963-5483,1469-2163

DOI: 10.1017/s0963548309009845